Классификация проекций по виду меридианов и параллелей нормальной сетки
В картографической практике распространена классификация проекции по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические, когда вспомогательной поверхностью служит боковая поверхность цилиндра, касательного к эллипсоиду, или секущего эллипсоид; конические, когда вспомогательной плоскостью является боковая поверхность касательного или секущего конуса; азимутальные, когда вспомогательная поверхность - касательная или секущая плоскость.
Геометрическое построение названных проекций отличается большой наглядностью. Для простоты рассуждения вместо эллипсоида воспользуемся шаром.
Заключим шар в цилиндр, касательный по экватору (рис. 3.а). Продолжим плоскости меридианов ПА, ПБ, ПВ, .и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями aAa1, 6Бб1, вВв1, ., перпендикулярными экватору АБВ . Изображение параллелей может быть получено различными способами. Один из них - продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам. Полученная цилиндрическая проекция (рис. 3. 6) оказывается равновеликой, так как боковая поверхность S шарового пояса АЕДГ, равная 2лRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по вере удаления от экватора.
Рис. 3. Построение картографической сетки в равновеликой цилиндрической проекции.
Другой способ определения положения параллелей основан на сохранении длин меридианов, т. е. на сохранении главного масштаба вдоль всех меридианов. В этом случае цилиндрическая проекция равнопромежуточная по меридианам (см. рис. 2. 6).
Для равноугольной цилиндрической проекции необходимо в любой точке постоянство масштаба по всем направлениям, что требует увеличения масштаба вдоль меридианов по мере удаления от экватора в соответствии с увеличением масштабов вдоль параллелей на соответствующих широтах (см. рис. 2. в).
Нередко вместо касательного цилиндра используют цилиндр, секущий шар по двум параллелям (рис. 4), вдоль которых при развертке сохраняется главный масштаб. В этом случае частные масштабы вдоль всех параллелей между параллелями сечения будут меньше, а на остальных параллелях - больше главного масштаба.
Для построения конической проекции заключим шар в конус, касающийся шара по параллели АБВГ (рис. 5, а). Аналогично предыдущему построению продолжим плоскости меридианов ПА, ПБ, ПВ, . и примем их пересечения с боковой поверхностью конуса за изображение на ней меридианов. После развертки боковой поверхности конуса на плоскости (рис. 5, 6) меридианы изобразятся радиальными прямыми ТА, ТБ, ТВ, ., исходящими из точки Т, причем углы между ними будут пропорциональны (но не равны) разностям долгот. Вдоль параллели касания АБВ (дуги окружности радиусом ТА) сохраняется главный масштаб. Положение других параллелей, изображающихся дугами концентрических окружностей, можно определить из разных условий, одно из которых - сохранение главного масштаба вдоль меридианов (АЕ=Ае) - приводит к конической равнопромежуточной проекции.
Другие статьи
География миграций
География миграций напрямую
зависит от истории, которая ни секунду не стоит на месте. А в свою очередь, в
ходе истории, изменяются миграции, их направленность, структура и величина.
Именно поэтому проблема изучения миграций актуальна в любой временной отрезок
истории. В наше время в м ...